CS231n:12 强化学习

CS231n第十二节:强化学习

本系列文章基于CS231n课程,记录自己的学习过程,所用视频资料为 2017年版CS231n,阅读材料为CS231n官网2022年春季课程相关材料

本节将介绍一些强化学习相关的内容。

1. 强化学习

1.1 定义

如下图所示,就是强化学习的工作过程。首先,存在一个环境,和一个代理,环境先给代理一个状态 ,然后代理根据这个状态输出一个动作 给环境。环境接受这个动作后进行评估,反馈给代理一个奖励值 ,以及下一步状态 ,如此往复直到环境给出一个终结状态。这样一个模型的目标是尽可能地获得更多的奖励值。

image-20220727195008608

1.2 应用

强化学习有很多的应用,举几个比较常见的例子:

小车平衡问题

目标:平衡正在移动的小车上的杆使其处于上方。

状态:杆与水平线的角度,杆运动的角速度,小车位置,小车水平速度。

动作:给小车施加横向的力。

奖励:每一时刻,如果杆位于小车正上方,则得1分。

image-20220727195400068

机器人移动问题

目标:让机器人学会自己向前移动

状态:关节的角度和位置

动作:施加在关节上的力矩

奖励:每一时刻如果机器人向右前方前进,则得1分

image-20220727195707282

街机游戏

目标:在游戏中获得更高的分数

状态:当前游戏的元素像素值

动作:游戏中的控制,比如前后左右

奖励:由每一时刻游戏得分的升降决定

image-20220727195844215

围棋

目标:获得游戏的胜利

状态:每个棋子的位置

动作:下一步应该下在什么位置

奖励:如果最终游戏胜利则得1分,否则0分

image-20220727200126142

2. 马尔科夫决策过程

2.1 定义

马尔科夫决策过程就是强化学习的数学公式化,其符合马尔科夫性质——当前的状态可以完全地描述世界的状态。

马尔科夫决策过程由一个包含五个元素的元组构成:,每个元素的含义如下:

  • :表示所有可能的状态的集合。
  • :表示所有可能的动作的集合。
  • :表示给定一对(状态,动作)的奖励值的分布,即一个从(状态,动作)到奖励值的映射。
  • :状态转移概率,即给定一对(状态,动作)时下一个状态的分布。
  • :折扣因子,即对近期奖励和长远奖励之间的一个权重。

2.2 工作方式

  • 首先在初始阶段 时,环境会从初始状态分布 中进行采样,得到初始状态,即

  • 然后,从 开始一直到整个过程结束,重复下述过程:

    • 代理根据当前状态 选择一个动作
    • 环境采样得到一个奖励值
    • 环境采样得到下一个状态
    • 代理接受到奖励值 和下一个状态

其中,定义一个策略 表示一个从 的函数,用于指明在每个状态下应该采取哪个动作。所以,目标就是寻找到一个策略 使得累加的折扣奖励值(即使用 加权后的奖励值) 最大。下面举一个简单的例子:

如下图的网格中,我们的状态就是这样一个网格和当前所在的位置,动作的集合为上下左右移动,每进行一次移动就会得到一个-1的奖励值。我们的目标是采取最少的步数,到达任意一个终点(星标格子)。如下图所示就是两个不同的策略,即 函数,其中左边就是完全随机策略,右边则是一个最优的策略。

image-20220727202438228

那么,我们如何寻找这样一个最优的策略 ,使得最大化奖励值的总和呢?首先,我们可以给出 的正式表达式:

3. Q-learning

3.1 一些定义

价值函数

对于一个给定的策略 ,我们只要给定初始状态 ,那么就可以依次产生一个序列

也就是说,给定一个策略 后我们就能计算出在状态 下能产生的累积奖励值的期望,这就是价值函数:

注意,价值函数评价了给定策略 下状态 的价值,由策略 和当前状态 所唯一确定。

Q-价值函数 Q-value

Q-价值函数则评价了给定策略 下,在状态 下采取动作 后,所能带来的累积奖励期望:

Q-价值函数由策略 和当前状态 和当前动作 所唯一确定。

贝尔曼方程 Bellman equation

现在我们固定当前状态 和当前动作 ,那么目标就是要选择最优策略 ,使得Q-value函数最大,这个最优的Q-value函数被记为

理解一下 ,也就是在当前状态 下采取动作 后,所能达到的最大累积奖励期望。显然 仅与 有关。而强化学习方法 Q-learning 的核心公式——贝尔曼方程,则给出了的另一种表达形式:

理解:当我们在状态 下采取动作 后,环境会反馈给我们一个奖励 $r$ ,以及下一时刻可以转移的状态 (一个集合),以及对应的动作 ,我们选择状态集合中Q-value最大的作为转移状态,即 最大,也就是说我们每次转移都选取期望奖励最大的作为下一次的状态,这样我们就可以递归地调用 了。

3.2 Value iteration 算法

Bellman方程中使用 Q-value 给每次的一个情况(即一个特定的状态和动作组合)都指示了接下来转移的状态和动作,那么只要求得 所有的 Q-value ,就能找到最优策略

一个最简单的思路就是将贝尔曼方程看成一个迭代更新的式子:

即新的Q-value由旧的Q-value得到,初始时所有的Q-value为0。

具体例子可以参考:https://blog.csdn.net/itplus/article/details/9361915

那么只要迭代足够多的次数,就能得到所有的Q-value值,但是这有个问题,就是这个方法的拓展性很差。由于要求出所有的Q-value,那么对于一些任务,比如自动玩游戏,其状态为所有的像素,这样庞大的计算几乎是不可能实现的。

3.3 神经网络求Q-value

因此,我们需要使用一个函数估计器去逼近真实的Q-value,通常神经网络是一个很好的函数估计器,即:

其中的 表示神经网络的参数,使用这样一个式子,神经网络可以自学习调整 使得其在给定的 下输出值约等于 ,要使用神经网络训练就需要规定损失函数,由于这是一个回归问题,所以很自然地我们就能想到使用L2损失函数:

其中, 表示真实值:

于是,在反向传播是我们计算梯度:

下面我们以前面提到的街机游戏作为一个例子说明,首先回顾一下街机游戏的目标:

  • 目标:在游戏中获得更高的分数
  • 状态:当前游戏的元素像素值
  • 动作:游戏中的控制,比如前后左右
  • 奖励:由每一时刻游戏得分的升降决定

我们有如下一个网络结构,将最近的4帧游戏图片进行灰度化以及一些下采样等预处理后得到 的一个输入,然后通过两个卷积层提取特征,最后使用两个全连接层输出一个 维向量,表示输入状态下,分别为上下左右四个动作时的 Q-value,于是我们就可以训练这个网络了。

image-20220728095600718

3.4 Experience Replay

但是直接训练有个问题:数据相关性。在使用神经网络逼近函数的方法里,我们修改的是参数 ,因为函数通常是连续的,所以为了调整参数使得 更加接近真实值,也会修改 附近的其它状态。比如我们调整参数之后 变大了,那么如果 很接近 ,那么 也会变大。比如在上面的游戏中,状态 可以表示为连续 4 帧的图像,两个连续状态肯定很像(可能就是几个像素的区别),而我们更新的target又依赖于 ,因此这会起到一种放大作用,使得所有估计都偏大,这就很容易造成训练的不稳定。于是,提出了 Experience replay 来解决这个问题。

为了避免数据的相关性,它会有一个replay buffer,用来存储近期的一些 。训练的时候随机的从replay buffer里均匀的采样一个 minibatch 的 来调整参数 。因为是随机挑选的,所以这些数据不太可能有前后相关性。当然,这种方法也有弊端,就是训练的时候是 offline 的形式,无法做到 online 的形式。

3.5 算法流程

image-20220728101146140

上面算法流程图中的过程其实就是在训练一个深度神经网络,因为神经网络是被证明有万有逼近的能力的,也就是能够拟合任意一个函数;一个 episode 相当于 一个 epoch。

4. Policy Gradients

4.1 定义

上面介绍的Q-learning有个问题就是 函数可能会非常复杂,比如说控制机器人抓取物体就是一个高维的状态,所以对于提取每一对 (状态,动作)对应的价值就十分困难了。但是,其实这样一个目标的策略是十分简单的——只要控制机器人的手握紧就行。所以,我们是否可以直接去学习策略,即从一堆策略集合中选择一个最佳的策略,而不是使用间接的方式。首先,我们将策略进行参数化:

然后对于每个给定的参数化策略,定义其价值函数:

所以,我们的目标就变成了找到一个 ,实现方法就是对策略参数进行梯度上升。

4.2 REINFORCE algorithm

在数学上,我们可以将上文的价值函数换一种写法:

其中的 表示一个行动轨迹的价值, ,也就是说现在我们只需要求出梯度 然后使用梯度上升更新参数即可。可是,问题是这个梯度是不好求的,因为这里的 依赖于 。不过,我们可以使用一个很好的技巧,将梯度转换成:

于是就有:

我们就可以得到下面这样的结论:

image-20220728122219005

对于这样一个策略价值的梯度,有这样的解释:

  • 如果 很高,那么我们就提高我们所看见的动作的概率

  • 如果 很高,那么我们就降低我们所看见的动作的概率

     

4.3 Variance reduction

一些方法

image-20220728122652708

使用Baseline

image-20220728122801098

一个简单的基准就是使用目前为止,所有轨迹所经历的奖励的恒定移动平均值,即:

一个更好的基准就是从一个状态中推高一个行动的概率,如果这个行动比我们应该从该状态中得到的预期值更好。

4.4 Actor-Critic Algorithm

image-20220728123349449

4.5 Recurrent Attention Model

image-20220728123409648

image-20220728123419324

4.6 AlphaGo

image-20220728123437542

暂无评论

发送评论 编辑评论


				
|´・ω・)ノ
ヾ(≧∇≦*)ゝ
(☆ω☆)
(╯‵□′)╯︵┴─┴
 ̄﹃ ̄
(/ω\)
∠( ᐛ 」∠)_
(๑•̀ㅁ•́ฅ)
→_→
୧(๑•̀⌄•́๑)૭
٩(ˊᗜˋ*)و
(ノ°ο°)ノ
(´இ皿இ`)
⌇●﹏●⌇
(ฅ´ω`ฅ)
(╯°A°)╯︵○○○
φ( ̄∇ ̄o)
ヾ(´・ ・`。)ノ"
( ง ᵒ̌皿ᵒ̌)ง⁼³₌₃
(ó﹏ò。)
Σ(っ °Д °;)っ
( ,,´・ω・)ノ"(´っω・`。)
╮(╯▽╰)╭
o(*////▽////*)q
>﹏<
( ๑´•ω•) "(ㆆᴗㆆ)
😂
😀
😅
😊
🙂
🙃
😌
😍
😘
😜
😝
😏
😒
🙄
😳
😡
😔
😫
😱
😭
💩
👻
🙌
🖕
👍
👫
👬
👭
🌚
🌝
🙈
💊
😶
🙏
🍦
🍉
😣
Source: github.com/k4yt3x/flowerhd
颜文字
Emoji
小恐龙
花!
上一篇
下一篇